
MPITypes: 
Processing MPI Datatypes 
Outside MPI 

Rob Ross1, Rob Latham1, William Gropp2, 
Ewing Lusk1, Rajeev Thakur1 
1 Mathematics and Computer Science Division 
  Argonne National Laboratory 
  {rross, robl, lusk, thakur}@mcs.anl.gov 
2 Computer Science Department 
  University of Illinois at Urbana-Champaign 
  wgropp@illinois.edu 



Argonne National 
Laboratory 

Motivation – Libraries and MPI 

 Libraries for parallel computing play a critical role in improving 
the performance of codes and productivity of application 
writers (e.g., MPI libraries, ScaLAPACK, PETSc, HDF5) 

 MPI communicators, requests, attributes, and datatypes are 
extremely useful constructs for building parallel libraries 

 Some improvements could be made in generalized requests 

–  R. Latham, W. Gropp, R. Ross, and R. Thakur, “Extending the MPI-2 
Generalized Request Interface,” Proc. of EuroPVM/MPI 2007. 

 The biggest missing piece for parallel libraries that 
build on MPI is a system for efficient, custom 
manipulation of data described by MPI datatypes. 

2 



Argonne National 
Laboratory 

Custom MPI Datatype Processing 

We need more than MPI_Pack and MPI_Unpack. 

 ROMIO – data sieving and two-phase optimizations 
–  Operates on portions of types (partial processing) 
–  Combines multiple types together 
–  Types describing file regions, not just memory regions 

 Parallel netCDF 
–  May operate on portions of types 
–  Byteswaps data on some systems 
–  Converts data from one representation to another 

3 



Argonne National 
Laboratory 

The MPITypes Library 

MPITypes is a portable, open source library for 
processing MPI datatypes in libraries and applications. 

 Based on MPICH2 datatype processing component 
 Built-in functions for packing, unpacking, and flattening 
 Toolkit for building custom type processing routines 

 Uses only MPI-2 functionality for accessing datatype 
information and caching data: 
–  Datatype envelope and contents functions 
–  Attributes on communicators and datatypes 

4 



Argonne National 
Laboratory 

Outline of Talk 

 Motivation 
 Datatype processing in MPICH2 

–  Dataloop representation of MPI datatypes 
–  Segments, leaf functions, and traversing dataloop 

trees 
 MPITypes 

–  Summary 
–  Basic functionality 
–  Building functions with MPITypes 

 Performance evaluation 
 Related work 
 Concluding remarks 

5 



Argonne National 
Laboratory 

Datatype Processing (from MPICH2) 

 Uses a simplified representation, called dataloops 
 Five basic dataloop node types with increasing complexity 

–  contig - blocklength 
–  vector - count, blocklength, stride 
–  blockindexed - count, blocklength, offset array 
–  indexed - count, blocklength array, offset array 
–  struct - count, blocklength array, offset array 

 Nodes are used to build trees for more complex types 
 Dataloop tree is processed nonrecursively, with state held in a 

data structure called a segment 
 Leaf functions define the operation performed on data 

6 



Argonne National 
Laboratory 

Simple Dataloop Example 

 MPI Vector datatype: 

 Dataloop representation (just one leaf node, 8-byte integers): 

MPI_INT 

MPI_Vector, cnt = 2, blklen = 2, str = 4 

DLP_Vector, cnt = 2, blklen = 2, str = 32, 
         el_sz = 8, el_ext = 8, el_type = MPI_INT  

7 



Argonne National 
Laboratory 

Complex Dataloop Example (FLASH) 

 Dataloop representation: 

Ghost cell 
Stored element 

… 
Vars 0, 1, 2, 3, … 23 

Graphic from A. Siegel, ANL 

8 

DLP_Vector, cnt = 80, blklen = 1, str = 768432, 
         el_sz = 4096, el_ext = 366920 

DLP_Vector, cnt = 8, blklen = 1, str = 49152, 
         el_sz = 512, el_ext = 22856 

DLP_Vector, cnt = 8, blklen = 1, str = 3072, 
         el_sz = 64, el_ext = 1352 

DLP_Vector, cnt = 8, blklen = 1, str = 192, 
         el_sz = 8, el_ext = 8, 
         el_type = MPI_DOUBLE  



Argonne National 
Laboratory 

Traversing Dataloops 

if (not a leaf node) { 
while (not done with this dataloop node) { 

update segment with new position 
push current dataloop state onto stack 
process next dataloop in tree 
decrement count/blklen in segment 

}    
pop dataloop off the stack and resume processing 

} else /* leaf */ { 
 if (leaf type is index && have index leaf fn) call index leaf fn 
 if (leaf type is vector && have vector leaf fn) call vector leaf fn 
 … 
 else call contig leaf fn 
 pop dataloop off stack in segment and resume processing 

} 

9 

DLP_Vector, cnt = 80, blklen = 1, str = 768432, 
         el_sz = 4096, el_ext = 366920 

DLP_Vector, cnt = 8, blklen = 1, str = 49152, 
         el_sz = 512, el_ext = 22856 

DLP_Vector, cnt = 8, blklen = 1, str = 3072, 
         el_sz = 64, el_ext = 1352 

DLP_Vector, cnt = 8, blklen = 1, str = 192, 
         el_sz = 8, el_ext = 8, 
         el_type = MPI_DOUBLE  



Argonne National 
Laboratory 

Outline of Talk 

 Motivation 
 Datatype processing in MPICH2 

–  Dataloop representation of MPI datatypes 
–  Segments, leaf functions, and traversing dataloop trees 

 MPITypes 
–  Summary 
–  Basic functionality 
–  Building functions with MPITypes 

 Performance evaluation 
 Related work 
 Concluding remarks 

10 



Argonne National 
Laboratory 

The MPITypes Library 

 Datatype processing extracted from MPICH2 
–  Symbols renamed to avoid conflicts 
–  Builds using mpicc of local MPI implementation 

 MPITypes functions build a dataloop representation on 
demand 
–  MPI_Type_get_envelope and MPI_Type_get_contents 

used to extract datatype parameters 
–  Attribute on datatype is used to associate the dataloop 

representation with the type, so it is only built once 
 Segment structure used to maintain state during processing 

(as in MPICH2) 
 User-defined processing functions allow custom behavior 

11 



Argonne National 
Laboratory 

Basic MPITypes Operators 

int MPIT_Type_memcpy(typebuf, count, type, streambuf, 
direction, start, end); 
–  Like MPI_Pack/MPI_Unpack, but allows partial processing 

int MPIT_Type_blockct(count, type, start, end, blockct); 
–  Provides a count of the number of contiguous regions in a 

portion of a [count, datatype] tuple 

int MPIT_Type_flatten(typebuf, count, type, start, end, disps, 
blocklens, count); 
–  Generates a list of offsets and lengths for a portion of a 

[buffer, count, datatype] tuple 

12 



Argonne National 
Laboratory 

MPITypes Toolkit Functions 

MPIT_Segment *MPIT_Segment_alloc(); 
int MPIT_Segment_init(buf, count, type, segment, flag); 
int MPIT_Segment_free(segment); 

–  Allocate, initialize, and free the data structure used to track 
progress while processing a [count, datatype] tuple 

int MPIT_Segment_manipulate(segment, start, end,  
(*contigfn) (...), (*vectorfn) (...), (*blkidxfn) (...), (*indexfn) (...), 
(*sizefn) (el_type), params); 
–  Traverse the datatype representation, executing specified leaf 

functions as leaves are encountered 

Basic MPITypes operators are built with these functions. 

13 



Argonne National 
Laboratory 

MPITypes memcpy Implementation (1/2) 
typedef struct MPIT_memcpy_params_s { 
   int direction; char *packbuf, *userbuf; 
} MPIT_memcpy_params; 

int MPIT_Leaf_contig_memcpy(MPI_Aint *blocks_p, MPI_Type el_type, 
MPI_Aint dtype_pos, void *unused, void *v_paramp) 

{ 
   MPI_Aint size, el_size; MPIT_memcpy_params *paramp = v_paramp; 
   MPI_Type_size(el_type, &el_size); size = *blocks_p * el_size; 

   if (paramp->direction == MPIT_MEMCPY_TO_USERBUF) 
      memcpy(paramp->userbuf + dtype_pos, paramp->packbuf, size); 
   else 
      memcpy(paramp->packbuf, paramp->userbuf + dtype_pos, size); 

   paramp->packbuf += size; return 0; 
} 

14 

Data structure used to 
hold parameters relevant 
to custom processing 



Argonne National 
Laboratory 

MPITypes memcpy Implementation (2/2) 
int MPIT_Type_memcpy(void *typebuf, int count, MPI_Datatype type, 

void *streambuf, int direction, MPI_Aint start, MPI_Aint *end) 
{ 
   MPIT_Segment *segp; 
   MPIT_memcpy_params params; 

   segp = MPIT_Segment_alloc(); 
   MPIT_Segment_init(NULL, count, type, segp, 0); 

   params.userbuf   = typebuf; 
   params.packbuf   = packbuf; 
   params.direction = direction; 

   MPIT_Segment_manipulate(segp, start, end, 
MPIT_Leaf_contig_memcpy, NULL, NULL, NULL, NULL, &params); 

   MPIT_Segment_free(segp); return MPI_SUCCESS; 
} 

Optional vector, 
blockindexed, 
and indexed leaf 
functions would 
go here. 

15 



Argonne National 
Laboratory 

Outline of Talk 

 Motivation 
 Datatype processing in MPICH2 

–  Dataloop representation of MPI datatypes 
–  Segments, leaf functions, and traversing dataloop trees 

 MPITypes 
–  Summary 
–  Basic functionality 
–  Building functions with MPITypes 

 Performance evaluation 
 Related work 
 Concluding remarks 

16 



Argonne National 
Laboratory 

Performance Evaluation 

 Goals 
–  Show that MPITypes performs on par with current MPI 

implementations for a variety of datatypes 
–  Establish feasibility of using MPITypes to implement 

relevant datatype operations 
–  Quantify benefit of using MPITypes in the context of a 

parallel library 
 Evaluation 

–  MPITypes memcpy implementation 
–  MPITypes implementation of transpacking 
–  Custom function for encoding data prior to I/O in Parallel 

netCDF 

17 



Argonne National 
Laboratory 

Test Environment 

 2.66 GHz Intel Xeon node 
–  8 cores 
–  16 Gbytes of main memory 
–  Little endian 

 Linux 2.6.27 
 GNU C compiler version 4.2.4 
 MPICH2 version 1.0.8p1 

–  Compiled with “--enable-fast=O3” 
 Open MPI version 1.3.1 

–  Compiled with “CFLAGS=-O3 --disable-heterogeneous  
--enable-shared=no --enable-static  
--with-mpi-param-check=no” 

18 



Argonne National 
Laboratory 

Comparing MPI_Pack/MPI_Unpack, 
MPIT_Type_memcpy, and manual copy rates 

Test MPICH2  
(MB/sec) 

Open MPI  
(MB/sec) 

MPITypes  
(MB/sec) 

Manual  
(MB/sec) 

Size  
(MB) 

Extent  
(MB) 

Contig 4152.07 4157.69 4149.13 2650.81 8.00 8.00 
Vector 1776.81 1680.23 1777.04 1777.60 8.00 16.00 

Indexed 1120.59 967.69 1123.97 1575.41 4.00 8.00 
XY Face 17564.43 18143.63 17520.11 16423.59 0.50 0.50 
XZ Face 4004.26 4346.81 3975.23 3942.41 0.50 127.50 
YZ Face 153.89 154.19 153.88 153.96 0.50 127.99 

MPITypes performance is essentially identical to MPI 
implementations. 
 Copy into and then back out of a contiguous buffer, many 

times (provides opportunity to verify correctness) 

19 



Argonne National 
Laboratory 

Transpacking 

 Transpacking is a solution to the typed copy problem – 
moving data from one datatype representation to another. 
–  Simple solution is to MPI_Pack and then MPI_Unpack, but this 

requires two copies and a large intermediate buffer 
–  Partial processing reduces memory requirement 
–  Better solution is to directly copy from one representation to 

another 
 Quite elegant solutions to this have been proposed previously 

(see Mir and Träff) 
 We implemented a less elegant solution using MPITypes (~200 lines) 

–  Best for like-sized types with a relatively small number of 
contiguous regions in a single instance 

–  Generates a “template” for how to copy between a single 
instance of each, iterates on this.  

20 



Argonne National 
Laboratory 

Comparing MPITypes Implementation of 
Transpack to MPI_Pack/MPI_Unpack (1/2) 

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45  50

T
im

e
 (

m
s
e
c
)

Datatype Count (times 1000)

contig(2,struct(1,2,3)) ==> vector(3,4)

Pack/Unpack (MPICH2)
Pack/Unpack (OpenMPI)

Transpack (MPITypes) 55% reduction in time over 
MPI_Pack/MPI_Unpack 

21 



Argonne National 
Laboratory 

Comparing MPITypes Implementation of 
Transpack to MPI_Pack/MPI_Unpack (2/2) 

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  5  10  15  20  25  30  35  40  45  50

T
im

e
 (

m
s
e
c
)

Datatype Count (times 1000)

vector(3,4,struct(3,4,5)) ==> vector(8,3,struct(4,2))

Pack/Unpack (MPICH2)
Pack/Unpack (OpenMPI)

Transpack (MPITypes) 43% reduction in time over 
MPI_Pack/MPI_Unpack 

22 



Argonne National 
Laboratory 

The Parallel netCDF I/O Library 

Parallel netCDF (PnetCDF) provides a convenient, 
efficient way of storing scientific data in a portable file 
format. 

23 



Argonne National 
Laboratory 

PnetCDF: Byteswapping in FLASH Case 

29% reduction in time over 
the original PnetCDF 
approach 

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  256
 512

 1024

 2048

T
im

e
 (

m
s
e
c
)

Block Count

PnetCDF Double ==> Double

PnetCDF
Translate
Memcpy

At most 9.5% gap between 
MPITypes copy and 
byteswap and only copying 
the data (no byteswap) 

24 



Argonne National 
Laboratory 

PnetCDF: Data Conversion in FLASH Case 

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  256
 512

 1024

 2048

T
im

e
 (

m
s
e
c
)

Block Count

PnetCDF Double ==> Float

PnetCDF (4 vars)
Translate (4 vars)

PnetCDF (1 var)
Translate (1 var)

31% reduction in time over 
the original PnetCDF 
approach when four types 
are adjacent to one another 

9% reduction in time 
between MPITypes and 
PnetCDF approach, when 
no elements are adjacent to 
one another 

25 



Argonne National 
Laboratory 

Related Work in Datatype Processing 

  J. Träff, R. Hempel, H. Ritzdoff, and F. Zimmermann, “Flattening on 
the fly: Efficient handling of MPI derived datatypes,” In Proceedings 
of EuroPVM/MPI 1999. 

 R. Ross, N. Miller, and W. Gropp, “Implementing fast and reusable 
datatype processing,” In Proceedings of EuroPVM/MPI 2003. 

  J. Worringen, J. Träff, and H. Ritzdorf, “Improving generic 
noncontiguous file access for MPI-IO,” In Proceedings of EuroPVM/
MPI 2003. 

 F. Mir and J. Träff, “Constructing MPI input-output datatypes for 
efficient transpacking,” In Proceedings of EuroPVM/MPI 2008. 

 F. Mir and J. Träff, “Exploiting efficient transpacking for one-sided 
communication and MPI-IO,” In Proceedings of EuroPVM/MPI 2009. 

26 



Argonne National 
Laboratory 

Concluding Remarks 

 MPITypes provides a high performance, customizable 
implementation of datatype processing 
–  Hides most of the complexity of efficiently manipulating 

MPI datatypes 
–  Retains performance characteristics of MPI 

implementations 
 Easy to use and incorporate into new and existing parallel 

libraries and applications 
–  Uses MPICH2 source code license (BSD-like)  

 Source code now available 
–  See http://www.mcs.anl.gov/mpitypes 

 Perhaps worth considering incorporating similar functionality 
into future MPI standards? 

27 


